Рубцовский индустриальный институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ТФ А.В. Сорокин

Рабочая программа дисциплины

Код и наименование дисциплины: **Б1.В.8** «Компьютерные и информационные технологии в литейном производстве»

Код и наименование направления подготовки (специальности): 15.03.02 Технологические машины и оборудование

Направленность (профиль, специализация): **Цифровые технологии в** формообразовании изделий

Статус дисциплины: часть, формируемая участниками образовательных

отношений

Форма обучения: заочная

Статус	Должность	И.О. Фамилия
Разработал	доцент	И.В. Курсов
	Зав. кафедрой «ТиТМПП»	В.В. Гриценко
Согласовал	руководитель направленности	В.В. Гриценко
	(профиля) программы	

г. Рубцовск

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Содержание компетенции	Индикатор	Содержание индикатора
	Способность проектировать		Способен разрабатывать 3D-модели
ПК-6	литейную оснастку различной	ПК-6.3	литейной оснастки и осуществлять их
	сложности		прототипирование

2. Место дисциплины в структуре образовательной программы

Дисциплины (практики)	
предшествующие изучению	Инженерная графика, Информатика, Компьютерная графика, Цифровые технологии в формообразовании
дисциплины, результаты	излепий
освоения которых необходимы	
для освоения данной	
дисциплины.	
Дисциплины (практики), для	
которых результаты освоения	проектирования литейных цехов
данной дисциплины будут	
необходимы, как входные	
знания, умения и владения для	
их изучения.	

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 3 / 108 Форма промежуточной аттестации: Зачет

	Виды занятий, их трудоемкость (час.)			Объем контактной	
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельна я работа	работы обучающегося с преподавателем (час)
заочная	6	8	0	94	18

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: заочная

Семестр: 10

Лекционные занятия (6ч.)

- **1.** Базовые функции **3-D** моделей сборочных единиц. {беседа} (2ч.)[3,4,7,8] Сопряжение элементов сборки. Контроль пересечений. Моделирование детали в составе сборки. Параметризация. Разнесение объектов. сборки.
- 2. Организация процессов разработки 3D-модели сложной литейной оснастки.(2ч.)[3,4,5,6,7,8]
- 3. Проекционные виды и ассоциативные связи(2ч.)[3,4,5,6,7,8]

Лабораторные работы (8ч.)

1. Создание 3D модели, ассоциативного чертежа и спецификации сборочной единицы литейной оснастки(8ч.)[1,4,7,8]

Самостоятельная работа (94ч.)

- 1. Проработка конспекта лекций, учебников, учебных пособий, другой учебно-методической литературы.(82ч.)[1,2,3,4,5,6,7,8]
- 2. Выполнение контрольной работы(8ч.)[1,2,4]
- 3. Подготовка к зачету(4ч.)[1,2,3,4,5,6,7,8]

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронно-библиотечным системам, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

- Проектирование 1. Баланюв A.B. КОМПАС 3D: системе Методические рекомендации к выполнению лабораторного практикума по дисциплине «Компьютерная студентов графика» ДЛЯ направления 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств» дневной формы обучения; Алт. гос. техн. ун-т И.И. Ползунова. Барнаул, 2017-161 **URL**: c. http://elib.altstu.ru/eum/download/tm/Balashov_kompas_mu.pdf (дата обращения 16.04.2021)
- 2. Курсов И.В. Компьютерные и информационные технологии в литейном производстве: методические указания по выполнению самостоятельной работы для студентов направления подготовки «Технологические машины и оборудование» / И.В. Курсов; Рубцовский индустриальный институт.- Рубцовск: РИИ 2022. 13 с. .URL: https://edu.rubinst.ru/resources/books/Kursov_I.V.__cad_sistemy_v_mashinostroenii_dl ya KTM (sam rabota) 2021.pdf (дата обращения 01.12.2021)

6. Перечень учебной литературы

6.1. Основная литература

- 3. Пузанкова, А. Б. Геометрическое моделирование в среде КОМПАС-3D: учебное пособие / А. Б. Пузанкова, А. А. Черепашков. Самара: Самарский государственный технический университет, ЭБС АСВ, 2020. 108 с. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/111694.html (дата обращения: 27.02.2022). Режим доступа: для авторизир. пользователей
- 4. Учаев, П. Н. Компьютерная графика в машиностроении : учебник / П. Н. Учаев, К. П. Учаева ; под редакцией П. Н. Учаева. Москва, Вологда : Инфра-Инженерия, 2021. 272 с. ISBN 978-5-9729-0714-4. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/115129.html (дата обращения: 27.02.2022). Режим доступа: для авторизир. пользователей

6.2. Дополнительная литература

- 5. Летин А.С. Компьютерная графика: Учеб. пособие: М.: ФОРУМ, 2007. 256 с. 20 экз.
- 6. Дегтярев В.М. Инженерная и компьютерная графика: Учебник [текст]/ В.М. Дегтярев, В.П. Затыльникова. М.: Академия, 2012. 240 с.-21 экз.

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 7. Техническая литература http://techliter.ru. Содержит учебные и справочные пособия, инженерные программы, калькуляторы, марочники.
- 8. Технологии машиностроения: Образовательный сайт http://www.1mashstroi.ru. Содержит информацию в области технологии машиностроения, стандартизации и сертификации (нормативные документы), качества продукции и производственной логистики.

8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

Фонд оценочных материалов (ФОМ) по дисциплине представлен в приложении A.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационнообразовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента. Для изучения данной дисциплины профессиональные базы данных и информационно-справочные системы не требуются.

№пп	Используемое программное обеспечение
1	LibreOffice
1	Компас-3d
2	Windows
3	Антивирус Kaspersky

№пп	Используемые профессиональные базы данных и информационные		
	справочные системы		
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным ресурсам" для студентов и преподавателей; каталог ссылок на образовательные		
	интернет-ресурсы (http://Window.edu.ru)		
2	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к фондам российских библиотек. Содержит коллекции оцифрованных документов		
	(как открытого доступа, так и ограниченных авторским правом), а также каталог изданий, хранящихся в библиотеках России. (http://нэб.рф/)		

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы
учебные аудитории для проведения учебных занятий
помещения для самостоятельной работы

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».

ПРИЛОЖЕНИЕ А ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ «Компьютерные и информационные технологии в литейном производстве»

1. Перечень оценочных средств для компетенций, формируемых в результате освоения дисциплины

Код контролируемой компетенции	Способ оценивания	Оценочное средство
		Комплект
ПК-6: Способность проектировать	Зачет	контролирующих
литейную оснастку различной сложности		материалов для
		зачета

2. Описание показателей и критериев оценивания компетенций, описание шкал оценивания

Оцениваемые компетенции представлены в разделе «Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций» рабочей программы дисциплины «Компьютерные и информационные технологии в литейном производстве».

При оценивании сформированности компетенций по дисциплине «Компьютерные и информационные технологии в литейном производстве» используется 100-балльная шкала.

Критерий	Оценка по 100-	Оценка по
	балльной шкале	традиционной шкале
Студент освоил изучаемый материал,	25-100	Зачтено
выполняет задания в соответствии с		
индикаторами достижения компетенций,		
может допускать отдельные ошибки.		
Студент не освоил основное содержание	0-24	Не зачтено
изученного материала, задания в		
соответствии с индикаторами		
достижения компетенций не выполнены		
или выполнены неверно.		

3. Типовые контрольные задания или иные материалы, необходимые для оценки уровня достижения компетенций в соответствии с индикаторами

1.Задания по дисциплине Цифровые технологии в формообразовании изделий

Компетенция	Индикатор достижения компетенции
ПК-6 Способность проектировать литейную оснастку	ПК-6.3 Способен разрабатывать 3D-модели
различной сложности	литейной оснастки и осуществлять их
	прототипирование

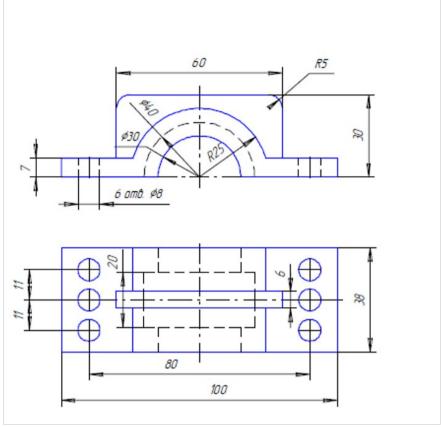


Рисунок 1 – Крышка

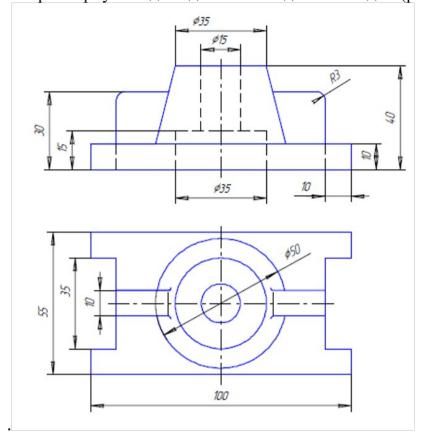


Рисунок 1 – Стойка

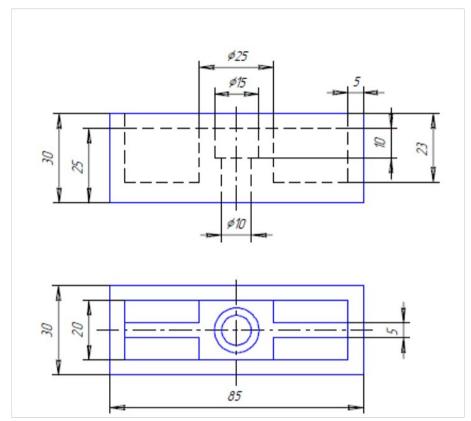
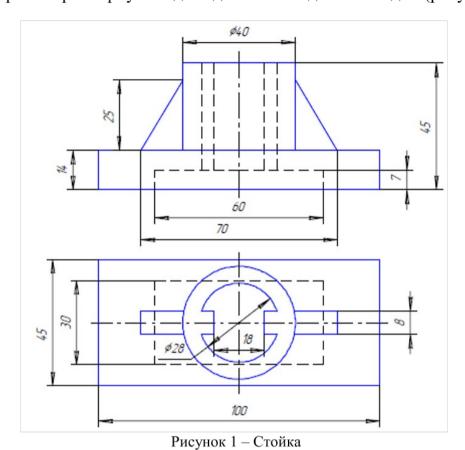
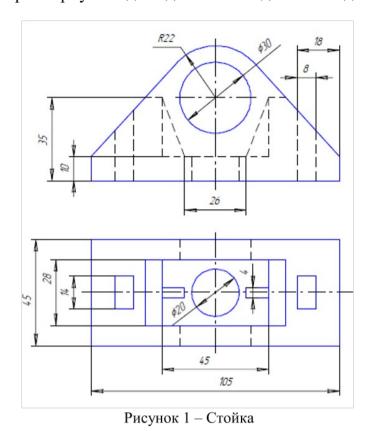




Рисунок 1 – Опора

10

11

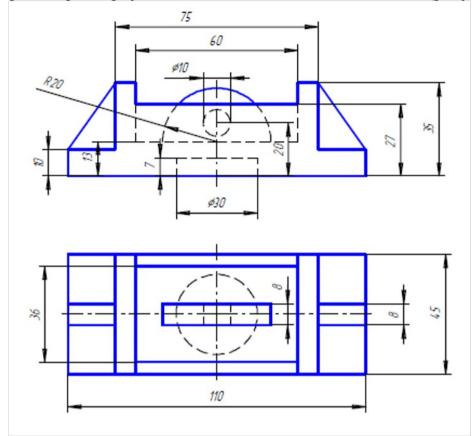


Рисунок 1 – Опора

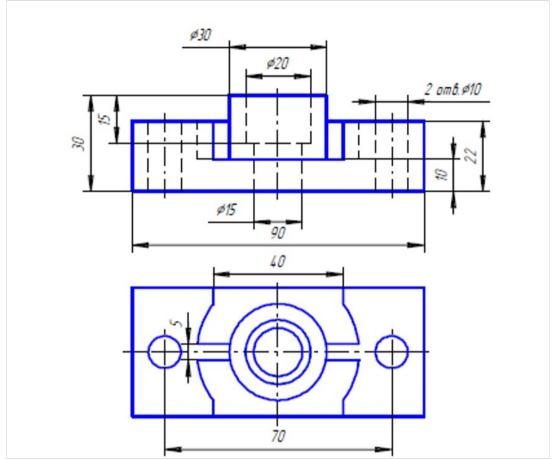


Рисунок 1 – Корпус

4. Файл и/или БТЗ с полным комплектом оценочных материалов прилагается.